วันพุธที่ 2 ธันวาคม พ.ศ. 2552

การอ่านค่าความต้านทานแบบแถบสี

บะการอ่านค่าความต้านทานแบบแถบสี

ตัวความต้านทาน
คือรีซีสเตอร์ (Resistor) หรือ “อาร์” (R) ซึ่งจะเป็นอุปกรณ์ที่ใช้กันมากในวงจรอิเล็กทรอนิกส์ อย่างเช่น วงจรขยายเสียง, วงจรวิทยุ, วงจรเครื่องรับโทรทัศน์ และอุปกรณ์เครื่องใช้ไฟฟ้าอื่น ๆ














































ความต้านทานแบบ 6 สี

จะอ่านค่า 5 แถบสีแรกแบบความต้านทาน 5 แถบสี ส่วนสีที่ 6 คือค่า Temperrature Coefdicient (CT) หรือสัมประสิทธ์ทางอุณหภูมิ มีหน่วยเป็น ppm (part per million : ส่วนในล้านส่วน) เป็นค่าแสดงลักษณะการเปลี่ยนแปลงค่าความต้านทาน เมื่ออุณหภูมิเปลี่ยนไป























แหล่งอ้างอิง
การอ่านค่าความต้านทาน.[ออนไลน์].เข้าถึงได้จาก:
http://www.basiclite.com/web/index.php?topic=62.0

การอ่านค่าความต้านทาน.[ออนไลน์].เข้าถึงได้จาก:
http://www.hs8jyx.com/html/r_read.html


วันพุธที่ 18 พฤศจิกายน พ.ศ. 2552

โรงไฟฟ้าพลังงานก๊าซ ( Gas turbine )

โรงไฟฟ้าพลังงานก๊าซ ( Gas turbine )






โรงไฟฟ้าพลังไอน้ำนั้น ได้มีการมาเป็นเวลานานเกือบปีมาแล้ว และมีการพัฒนาจนสามารถใช้งานได้ดี จ่ายกำลังไฟฟ้าได้สูงกว่า โรงไฟฟ้าที่ใช้ต้นกำลังอื่นขับหลายชนิด สำหรับโรงไฟฟ้าพลังงานก๊าซ ถูกคิดค้นเพื่อนำมาใช้งานเมื่อไม่นานมาเท่าไรนัก สาเหตุที่นำระบบก๊าซมาใช้ก็เนื่องจากว่า การสร้างโรงไฟฟ้าพลังงานไอน้ำ จำเป็นต้องหาแหล่งน้ำที่ต้องใช้ปริมาณมากบางครั้งทำได้ลำบาก อาจจะต้องสร้างอ่างเก็บน้ำขนาดใหญ่ขึ้นมา ทำให้สิ้นเปลืองค่าใช้จ่าย ตลอดจนปัญหาเรื่องหม้อน้ำ ซึ่งเปลืองพื้นที่ในการติดตั้ง และมักมีข้อขัดข้องเกิดขึ้น เมื่อเปรียบเทียบขนาดของโรงงานไฟฟ้าที่มีกำลังจ่ายไฟฟ้าเท่ากัน โรงไฟฟ้าพลังงานก๊าซจะมีขนาดเล็กกะทัดรัดกว่าโรงไฟฟ้าพลังไอน้ำ



1. หลักการทำงานของเครื่องกังหันก๊าซ

การทำงานของเครื่องกังหันก๊าซ คล้ายกับกังหันไอน้ำ โดยกังหันไอน้ำจะใช้พลังงาน
จากไอน้ำเป็นตัวขับกังหัน แล้วเปลี่ยนเป็นพลังงานกลขณะที่ไอน้ำวิ่งผ่านใบพัด พร้อมกับขยายตัวเป็นช่วง ๆ จนเข้าสู่เครื่องควบแน่น ( condenser ) ส่วนกังหันก๊าซนั้นตัวที่ขับกังหันจะเป็นก๊าซร้อนที่เกิดจากการเผาไหม้ของเชื้อเพลิงภายในห้องเผาไหม้ แล้วส่งเข้าตัวกังหัน
การทำงานของเครื่องกังหันก๊าซ โดยมีเครื่องอัดอากาศ ( compressor ) ต่ออยู่บนเพลาเดียวกับชุดกังหัน และต่อตรงไปยังเครื่องกำเนิดไฟฟ้า เมื่อเริ่มเดินเครื่อง อากาศจะถูกดูดจากภายนอกเข้าหาเครื่องอัดอากาศทางด้านล่าง ถูกอัดจนมีความดันและอุณหภูมิสูงขึ้น แล้วถูกส่งไปยังห้องเผาไหม้ ซึ่งใช้เชื้อเพลิงเป็นก๊าซธรรมชาติหรือน้ำมัน จะถูกเผาไหม้และให้ความร้อนแก่อากาศ ก๊าซร้อนที่ออกจากห้องเผาไหม้ จะถูกส่งไปยังตัวกังหัน ทำให้กังหันหมุนเกิดงานขึ้น ไปขับเครื่องอัดอากาศและขณะเดียวกันก็ขับเครื่องกำเนิดไฟฟ้าด้วย ความดันของก๊าซเมื่อผ่านตัวกังหันจะลดลงและผ่านออกมาที่บรรยากาศ
ปกติห้องเผาไหม้จะสร้างด้วยโลหะทนความร้อนสูง แต่เนื่องจากอุณหภูมิของก๊าซร้อนที่เข้าไปขับตัวกังหันมีขีดจำกัด ดังนั้นอากาศประมาณ 1/6 ของอากาศอัดทั้งหมดจะถูกใช้ในห้องเผาไหม้ส่วนที่เหลือ ก็จะทำหน้าที่ผสมกับก๊าซร้อน แล้วจึงนำเข้าไปยังเรือนกังหัน อุณหภูมิของเปลวไฟในห้องเผาไหม้อยู่ระหว่าง 3,000 – 4,000 องศาฟาเร็นไฮท์ แต่ก๊าซร้อนมีอุณหภูมิประมาณ 1,000 – 1,500 องศาฟาเร็นไฮท์ ก่อนเข้าสู่เรือนกังหัน เพื่อขับกังหันต่อไป พลังงานที่ผลิตจากเครื่องกังหันก๊าซ จะนำไปขับเครื่องอัดอากาศประมาณ 60% ส่วนที่เหลือจะนำไปขับเครื่องกำเนิดไฟฟ้าและอุปกรณ์ประกอบช่วยงานอย่างอื่น

2 การใช้งานของเครื่องกังหันก๊าซ



ปกติโรงไฟฟ้าพลังงานก๊าซ มักเป็นเครื่องจ่ายไฟสำรอง ( stand by ) และช่วยเสริมการผลิต เมื่อเกิดความต้องการใช้ไฟฟ้าสูงสุด ( peak load ) มีกำลังการผลิตตั้งแต่ 1 – 60 เมกกะวัตต์ นอกจากจะใช้เป็นเครื่องต้อนกำลังในการผลิตไฟฟ้าแล้ว เครื่องกังหันก๊าซยังใช้งานอย่างอื่นอีก เช่นใช้เป็นเครื่องต้นกำลังขับปั๊มขนาดใหญ่
- ขับเครื่องรถยนต์ที่มีเร็วสูง
- ขับเครื่องเรือที่มีความเร็วสูง
- ใช้เป็นเครื่องยนต์ สำหรับรถบรรทุก รถโดยสาร และรถแทรกเตอร์
- ใช้เป็นเครื่องต้อนกำลังสำหรับเครื่องบินไอพ่น ( jet plane)






ข้อดีของเครื่องกังหันก๊าซ
1. ต้นทุนการสร้างต่ำ
2. มีนำหนักเบา
3. สามารถเริ่มเดินเครื่องได้รวดเร็ว ใช้เวลาเพียง 40 –60 วินาทีเท่านั้น
4. อุปกรณ์ประกอบอื่น ๆ มีน้อย และประกอบอยู่ในชุดเดียวกัน
5. สามารถเคลื่อนย้ายไปติดตั้งในที่ที่ต้องการได้สะดวก รวดเร็ว ใช้เวลาเพียงไม่กี่สัปดาห์ ก็สามารถเดินเครื่องจ่ายไฟฟ้า แต่ถ้าเป็นโรงไฟฟ้า พลังงานไอน้ำจะต้องใช้เวลาในการออกแบบสร้าง และทดลองเดินเครื่องนานประมาณ 5 ปี



ข้อเสียของเครื่องกังหันก๊าซ
1. ความร้อนสูง ทำให้เกิดความเค้นต่อชิ้นส่วนภายในตัวกังหันสูงมาก จึงต้องมีการตรวจซ่อมบ่อย ๆ
2. ค่าใช้จ่ายในการผลิตสูง สิ้นเปลืองเชื้อเพลิงต่อหน่วยกิโลวัตต์ – ชั่วโมง มาก
3. มีประสิทธิ ภาพต่ำ เพราะกำลังที่ได้จ่ายเครื่องกังหันส่วนหนึ่งจะต้องนำไปใช้ขับเครื่องอัดอากาศ






3. เครื่องกังหันก๊าซระบบ 2 เพลา



จากวงจรการทำงานของเครื่องกังหันก๊าซระบบเพลาเดียว พลังงานที่เกิดขึ้นสามารถควบคุมได้ด้วยการปรับปริมาณเชื้อเพลิง ที่จ่ายเข้าไปในห้องเผาไหม้ ซึ่งเป็นการควบคุมอุณหภูมิของก๊าซร้อนก่อนเข้าสู่ตัวกังหัน ถ้าเชื้อเพลิงน้อย ความร้อนจากก๊าซที่เผาไหม้ และงานที่ได้จากตัวกังหันก็จะน้อยตามไปด้วย
ในระบบเพลาเดียว ทั้งเครื่องอัดอากาศและเครื่องกำเนิดไฟฟ้าจะถูกออกแบบให้หมุนด้วยความเร็วรอบคงที่ 3,000 รอบ / นาที บางครั้งการออกแบบ ต้องการแยกเครื่องอัดอากาศ และเครื่องกำเนิดไฟฟ้าให้อยู่คนละเพลา เพราะว่าเครื่องกังหัน จำเป็นจะต้องใช้อุปกรณ์ที่มีความเร็วรอบต่างกันไปอีก เช่น ปั๊มขนาดใหญ่ อุปกรณ์ช่วยเหลืออย่างอื่น ฯลฯ
การแยกเครื่องอัดอากาศ และเครื่องกำเนิดไฟฟ้าออกจากกันโดยใช้ระบบ 2 เพลา ซึ่งจะต้องมีกังหัน 2 ชุด คือ ชุดที่หนึ่ง ขับเครื่องอัดอากาศ ชุดที่สองขับเครื่องกำเนิดไฟฟ้า อุปกรณ์ที่รวมกันอยู่ในเส้นประเรียกว่า ก๊าซเจนเนอเรเตอร์ ( gas generator ) หรือ ก๊าซซิไฟเออร์ ( gasifier) พลังงานที่ขับโดยเครื่องกังหันตัวที่ 1 จะต้องขับเครื่องอัดอากาศอย่างเดียว หมุนด้วยความเร็วสูง 5,000 – 6,000 รอบ / นาที พลังงานส่วนที่เหลือจากการเผาไหม้จะออกจากเครื่องกังหันเป็นอากาศร้อน เข้าสู่เครื่องกังหันตัวที่ 2 ที่ใช้ขับเครื่องกำเนิดไฟฟ้าโดยตรง หมุนด้วยความเร็ว 3,000 รอบ /นาที ซึ่งเรียกว่า เพาเวอร์ เทอร์ไบน์ ( power turbine )






หลักการทำงานเบื้องต้นของกังหันก๊าซ
1.เครื่องอัดอากาศจะอัดอากาศให้มีความดันสูง 8-10 เท่า
2.อากาศความดันสูงจะถูกส่งเข้าไปยังห้องเผาไหม้ที่มีเชื้อเพลิงก๊าซ(หรือน้ำมันดีเซล) ทำการเผาไหม้
3.อากาศร้อนในห้องเผาไหม้เกิดการขยายตัว ทำให้มีความดันและอุณหภูมิสูง
4.ส่งอากาศนี้ไปดันกังหันก๊าซ
5.เพลาของกังหันก๊าซจะอยู่แกนเดียวกันกับอุปกรณ์ต่างๆ ที่จะนำไปใช้งาน เช่น เครื่องกำเนิดไฟฟ้า ฯลฯ

เครื่องอัดอากาศ ( Air Compressor )
เครื่องอัดอากาศ แบ่งออกเป็น 3 ชนิด คือ
1.เครื่องอัดอากาศแบบลูกสูบ ( Reciprocating Air Compressor )
2.เครื่องอัดอากาศแบบลูกสูบหลายขั้น ( Multistage Reciprcration Compressor )
3.เครื่องอัดอากาศแบบโรตารี ( Rotary Air Compressor )
แหล่งอ้างอิง
โรงงานไฟฟ้าพลังงานก๊าซ.[ออนไลน์].เข้าถึงได้จาก:
http://eestaff.kku.ac.th/~amnart/Power/gasturbine.doc

โรงไฟฟ้านิวเคลียร์



โรงไฟฟ้านิวเคลียร์




“โรงไฟฟ้านิวเคลียร์” คือ โรงงานผลิต กระแสไฟฟ้าที่ใช้พลังงานความร้อนจากปฏิกิริยาแตกตัวทางนิวเคลียร์ (nuclear fission reaction) ทำให้น้ำกลายเป็นไอน้ำที่มีแรงดันสูง แล้วส่งไอน้ำไปหมุนกังหันไอน้ำ ซึ่งต่อกับเครื่องกำเนิดไฟฟ้า เพื่อผลิตไฟฟ้า และส่งต่อไปยังผู้บริโภคต่อไป
โรงไฟฟ้านิวเคลียร์มีหลักการผลิตไฟฟ้าคล้ายกับโรงไฟฟ้าพลังความร้อนทั่วไป กล่าวคือ จะใช้พลังงานความร้อนไปผลิตไอน้ำ แล้วส่งไอน้ำไปหมุนกังหันไอน้ำและ เครื่องกำเนิดไฟฟ้า เพื่อผลิตกระแสไฟฟ้า ออกมา แต่มีข้อแตกต่างกันคือ ต้นกำเนิดพลังงานความร้อนของโรงไฟฟ้านิวเคลียร์เกิดจากปฏิกิริยาแตกตัวของยูเรเนียม-๒๓๕ ในเชื้อเพลิงนิวเคลียร์ ส่วนความร้อนจากโรงไฟฟ้าพลังความร้อนทั่วไปนั้นได้จากการเผาไหม้ของเชื้อเพลิง ซึ่งได้แก่ ถ่านหินหรือลิกไนต์ ก๊าซธรรมชาติหรือน้ำมัน เมื่อเปรียบเทียบปริมาณเชื้อเพลิงที่ใช้สำหรับการ ผลิตไฟฟ้า พบว่า หากใช้ยูเรเนียมธรรมชาติ (ความเข้มข้นของยูเรเนียม-๒๓๕ ประมาณร้อยละ ๐.๗) จำนวน ๑ ตัน จะสามารถผลิตไฟฟ้าได้มากกว่า ๔๐ ล้านกิโลวัตต์/ชั่วโมง ในขณะที่ต้องใช้ถ่านหินถึง ๑๖,๐๐๐ ตัน หรือใช้น้ำมันถึง ๘๐,๐๐๐ บาร์เรล (ประมาณ ๑๓ ล้านลิตร) จึงจะผลิตไฟฟ้าได้เท่ากัน การนำพลังงานนิวเคลียร์มาใช้เพื่อผลิต ไฟฟ้า เป็นความสำเร็จทางวิทยาศาสตร์ที่เกิดขึ้นในช่วงเวลาประมาณ ๕๐ ปีที่ผ่านมานี้เอง โดยใน พ.ศ. ๒๔๙๔ ได้มีการทดลอง เดินเครื่องปฏิกรณ์เพื่อผลิตกระแสไฟฟ้าเป็นครั้งแรกของโลกขึ้นที่สถานีทดลองพลังงานไอดาโฮ เพื่อจ่ายกระแสไฟฟ้าให้แก่ เมืองอาร์โค มลรัฐไอดาโฮ ประเทศสหรัฐอเมริกา การก่อสร้างโรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูงในเชิงพาณิชย์ขนาด ๗๕ เมกะวัตต์ ได้เริ่มขึ้นที่ชิปปิงพอร์ต มลรัฐเพนซิลเวเนีย ประเทศสหรัฐอเมริกา ใน พ.ศ. ๒๔๙๗ และได้จ่ายกระแสไฟฟ้าให้แก่เมืองพิตต์สเบิร์ก ใน พ.ศ. ๒๕๐๐ ต่อมาใน พ.ศ. ๒๕๐๒ โรงไฟฟ้านิวเคลียร์เดรสเดน (แบบปฏิกรณ์น้ำเดือด) ได้เดินเครื่องจ่ายกระแสไฟฟ้าให้แก่เมืองมอร์ริส มลรัฐอิลลินอยส์ หลังจากนั้น การก่อสร้างโรงไฟฟ้านิวเคลียร์ทั้ง ๒ แบบได้ขยายตัวขึ้น และแพร่หลายไปยังประเทศอื่นๆ รวมทั้งการพัฒนาเทคโนโลยีโรงไฟฟ้า นิวเคลียร์ให้มีขนาดใหญ่ขึ้นกว่า ๑,๐๐๐ เมกะวัตต์ และมีความปลอดภัยยิ่งขึ้น






โรงไฟฟ้านิวเคลียร์มี่ส่วนประกอบที่สำคัญอะไรบ้าง
โรงไฟฟ้านิวเคลียร์มีส่วนประกอบที่สำคัญ คือ
๑) อาคารปฏิกรณ์ ประกอบด้วย เครื่องปฏิกรณ์ เครื่องผลิตไอน้ำ เครื่องควบคุมความดัน ปั๊มน้ำระบายความร้อน อุปกรณ์อื่นๆ เช่น วัสดุกำบังรังสี ระบบควบคุมการเดินเครื่อง และระบบความปลอดภัยต่างๆ
๒) อาคารเสริมระบบปฏิกรณ์ ประกอบด้วย เครื่องมืออุปกรณ์สำหรับการเดินเครื่องปฏิกรณ์ อุปกรณ์ความปลอดภัย บ่อเก็บเชื้อเพลิงใช้แล้ว
๓) อาคารกังหันไอน้ำ ประกอบด้วย ชุดกังหันไอน้ำ เครื่องกำเนิดไฟฟ้าและอุปกรณ์ประกอบ
๔) สถานีไฟฟ้าแรงสูง ประกอบด้วย ระบบสายส่งไฟฟ้าแรงสูงและอุปกรณ์ประกอบ
๕) อาคารฝึกหัดเดินเครื่องโรงไฟฟ้า ประกอบด้วย แบบจำลองสำหรับฝึกหัดเดินเครื่องโรงไฟฟ้า ทั้งสภาวะปกติและฉุกเฉิน
๖) อาคารระบบคอมพิวเตอร์ ประกอบด้วย ระบบอุปกรณ์/ข้อมูลสำหรับ การเดินเครื่องโรงไฟฟ้า
๗) หม้อแปลงไฟฟ้า ประกอบด้วย หม้อแปลงไฟฟ้าหลัก และหม้อแปลงไฟฟ้าสำรองสำหรับการเดินเครื่อง
๘) อาคารอำนวยการ ประกอบด้วย สำนักงาน ห้องทำงานต่างๆ ห้องประชุม
๙) อาคารสำนักงานและฝึกอบรม ประกอบด้วย ห้องทำงาน ห้องฝึกอบรม ห้องประชุม ห้องปฏิบัติการทางเคมี ห้องอาหาร
๑๐) อาคารรักษาความปลอดภัย เป็นอาคารทางเข้าบริเวณโรงไฟฟ้า ประกอบด้วย เจ้าหน้าที่และอุปกรณ์เครื่องมือของระบบรักษาความปลอดภัยต่างๆ
๑๑) อาคารโรงสูบน้ำ เป็นอาคารที่สูบน้ำจากแหล่งน้ำธรรมชาติภายนอก เพื่อนำมาควบแน่นไอน้ำในระบบผลิตไอน้ำ ประกอบด้วย ชุดปั๊มน้ำ และอุปกรณ์ประกอบต่างๆ
๑๒) ส่วนประกอบอื่นๆ ได้แก่ ระบบสายส่งไฟฟ้าแรงสูง และหอระบายความร้อน (ถ้าไม่มีแหล่งน้ำธรรมชาติขนาดใหญ่)






หลักการทำงานของโรงไฟฟ้านิวเคลียร์แบ่งได้กี่แบบ
โรงไฟฟ้านิวเคลียร์แบ่งการทำงานออก เป็น ๒ ส่วนใหญ่ๆ คือ
๑) ส่วนผลิตความร้อน ได้แก่ เครื่องปฏิกรณ์นิวเคลียร์ ระบบน้ำระบายความร้อน และเครื่องผลิตไอน้ำ

๒) ส่วนผลิตกระแสไฟฟ้า ประกอบด้วย กังหันไอน้ำ และเครื่องกำเนิดไฟฟ้า โดยส่วนผลิตความร้อนจะส่งผ่านความร้อนให้กระบวนการผลิตไอน้ำ เพื่อนำไปใช้ผลิต ไฟฟ้าต่อไป

พิจารณาจากหลักการทำงาน อาจแบ่งโรงไฟฟ้านิวเคลียร์ออกได้เป็น ๓ แบบดังนี้

๑. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์ความดันสูง (Pressurized Water Reactor : PWR)
โรงไฟฟ้านิวเคลียร์แบบ PWR มีหลักการทำงานคือ เมื่อเครื่องปฏิกรณ์ทำงาน จะเกิดปฏิกิริยาแตกตัวกับเชื้อเพลิงนิวเคลียร์ ทำให้เกิดความร้อน กัมมันตรังสี และผลิตผล จากการแตกตัว (fission product) หรือกาก เชื้อเพลิง โดยความร้อนจากเชื้อเพลิงจะถ่ายเทให้แก่น้ำระบายความร้อนวงจรที่ ๑ ซึ่งไหลเวียนตลอดเวลาด้วยปั๊มน้ำ โดยมีเครื่องควบคุมความดันคอยควบคุมความดันภายในระบบให้สูงและคงที่ ส่วนน้ำที่รับความร้อนจากเชื้อเพลิงจะไหลไปยังเครื่องผลิตไอน้ำ และถ่ายเทความร้อนให้ระบบน้ำวงจรที่ ๒ ซึ่งแยกเป็นอิสระจากกัน ทำให้น้ำเดือดกลายเป็นไอน้ำแรงดันสูง และถูกส่งผ่านไปหมุนกังหันไอน้ำ และเครื่องกำเนิด ไฟฟ้าซึ่งต่ออยู่กับกังหันไอน้ำ เมื่อเครื่องกำเนิดไฟฟ้าหมุน จะเกิดกระแสไฟฟ้าที่สามารถนำไปใช้งานได้ต่อไป ไอน้ำแรงดันสูงที่หมุนกังหันไอน้ำแล้ว จะมีแรงดันลดลง และถูกส่งผ่านมาที่เครื่องควบแน่นไอน้ำ เมื่อไอน้ำได้รับความเย็นจากวงจรน้ำเย็นจะกลั่นตัวเป็นน้ำและส่งกลับไปยังเครื่องผลิตไอน้ำด้วยปั๊มน้ำ เพื่อรับความร้อนจากระบบน้ำวงจรที่ ๑ วนเวียนเช่นนี้ตลอดการเดินเครื่องปฏิกรณ์

๒. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำเดือด (Boiling Water Reactor : BWR)
โรงไฟฟ้านิวเคลียร์แบบ BWR มีหลัก การทำงานคล้ายโรงไฟฟ้านิวเคลียร์แบบ PWR แต่มีข้อแตกต่างกันที่ส่วนผลิตความร้อน เพราะความร้อนจากเชื้อเพลิงที่ถ่ายเทให้แก่วงจรน้ำระบายความร้อน จะทำให้น้ำเดือดกลายเป็นไอน้ำไปหมุนกังหันไอน้ำโดยตรง โดยไม่มีระบบน้ำวงจรที่ ๒ มารับความร้อน เหมือนแบบ PWR

๓. โรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำมวลหนัก (Pressurized Heavy Water Reactor : PHWR)
โรงไฟฟ้านิวเคลียร์แบบ PHWR หรือมีชื่อทางการค้าว่า แคนดู (CANDU : CANada Deuterium Uranium) มีหลักการทำงานเหมือนโรงไฟฟ้าแบบ PWR แต่แตกต่างกันที่เครื่องปฏิกรณ์จะวางในแนวนอน ใช้ยูเรเนียมธรรมชาติเป็นเชื้อเพลิง และใช้น้ำมวลหนัก (Heavy water : D2O) เป็นสาร ระบายความร้อนและสารหน่วงนิวตรอน

ข้อแตกต่างระหว่างเชื้อเพลิงนิวเคลียร์กับเชื้อเพลิงซากดึกดำบรรพ์
เชื้อเพลิงนิวเคลียร์

๑. ใช้หลักปฏิกิริยาแตกตัวทางนิวเคลียร์ในการผลิตความร้อน ไม่มีเขม่าควัน หรือก๊าซจากการแตกตัวออกสู่บรรยากาศ
๒. โรงไฟฟ้าขนาด ๑,๐๐๐ เมกะวัตต์ ใช้ปริมาณเชื้อเพลิงประมาณ ๓๐ ตัน/ปี
๓. ราคาเชื้อเพลิงไม่ผันผวน เพราะใน ๑ รอบการเดินเครื่อง (cycle) จะใช้เชื้อเพลิงประมาณ ๑ ใน ๓ ของทั้งหมดที่อยู่ในเครื่องปฏิกรณ์ เมื่อรวมกับเชื้อเพลิงสำรอง อีกประมาณ ๑.๕ เท่า จะทำให้สามารถเดินเครื่องได้ไม่ต่ำกว่า ๔ รอบ โดยต้นทุน เชื้อเพลิงไม่เปลี่ยนแปลงเลย (๑ รอบการเดินเครื่อง = ๑๘ เดือน)
๔. ต้องใช้เทคโนโลยีเฉพาะด้านในการผลิตเชื้อเพลิง
๕. กากเชื้อเพลิงที่เกิดขึ้นถูกกักอยู่ในแท่งเชื้อเพลิง เมื่อเลิกใช้งานแล้ว เชื้อเพลิง ยังคงสภาพทางกายภาพในลักษณะเดิม
๖. เชื้อเพลิงกลายเป็นกากกัมมันตรังสีสูง ที่ต้องใช้เทคโนโลยีเฉพาะด้านในการจัดการ แต่ใช้พื้นที่ไม่มาก
๗. ปริมาณสำรองเชื้อเพลิง (ธาตุยูเรเนียม/ทอเรียม) ในโลกเท่าที่สำรวจพบ มีอยู่ประมาณ ๖๐๐ Q ในกว่า ๒๐ ประเทศ (๑ Q ป ๑๐๒๑ จูล)
เชื้อเพลิงซากดึกดำบรรพ์
๑. ใช้หลักการเผาไหม้ในการผลิตความร้อน ทำให้เกิดเขม่าควัน ก๊าซเรือนกระจก จากการเผาไหม้ของสารไฮโดรคาร์บอน
๒. ใช้ปริมาณถ่านหิน ๒.๖ ล้านตัน หรือน้ำมัน ๒ ล้านตัน/ปี สำหรับโรงไฟฟ้าขนาดเดียวกัน
๓. หากเป็นการนำเข้าจากต่างประเทศ ราคาถ่านหินอาจมีการเปลี่ยนแปลงได้ เมื่อเทียบ กับรอบการเดินเครื่องที่เท่ากัน
๔. ใช้เทคโนโลยีทั่วไปในการผลิตเชื้อเพลิง
๕. เปลี่ยนรูปเป็นเถ้าปริมาณมากในกรณีของถ่านหิน
๖. ไม่ต้องใช้เทคโนโลยีขั้นสูงในการจัดการกากเถ้าของถ่านหิน แต่ต้องใช้พื้นที่มาก
๗. ปริมาณสำรองเชื้อเพลิงซากดึกดำบรรพ์ทั่วโลกมีอยู่ประมาณ ๑๓๘ Q (ถ่านหิน ๑๓๒ Q น้ำมันและก๊าซ ๖ Q)

แหล่งอ้างอิง

โรงงานไฟฟ้านิวเคลียร์.[ออนไลน์].เข้าถึงได้จาก:




















โร

Fi

วันศุกร์ที่ 4 กันยายน พ.ศ. 2552

เลนส์นูน

เลนส์นูน






เลนส์นูน (convex lens) คือ เลนส์ที่โค้งออกด้านนอก มีขอบแคบ และตรงกลางกว้าง แสงที่ผ่านเลนส์นูนจะรวมเป็นจุดเดียว เรียกจุดนี้ว่า จุดโฟกัส เลนส์นูนสามารถสร้างภาพจริงหรือภาพเสมือนได้


ภาพที่เกิดจากเลนส์นูน



เลนส์นูนสามารถให้ทั้งภาพจริงและภาพเสมือน และภาพจริงเป็นภาพที่ฉากสามารถรับได้เป็นภาพหัวกลับกับวัตถุ ส่วนภาพเสมือนเป็นภาพที่ฉากไม่สามารถรับได้ เป็นภาพหัวตั่งเหมือนวัตถุ
ภาพจริงที่เกิดจากเลนส์นูนมีหลายขนาด ทั้งนี้ขึ้นอยู่กับระยะวัตถุ และตำแหน่งภาพจริงที่จะเกิดหลังเลนส์
ภาพเสมือนที่เกิดจากเลนส์นูนมีขนาดใหญ่กว่าวัตถุและตำแหน่งภาพเสมือนจะเกิดหน้าเลนส์
เลนส์นูนจะให้ทั้งภาพจริงและภาพเสมือน ทั้งนี้ขึ้นอยู่กับตำแหน่งของวัตถุ ถ้าระยะวัตถุมากกว่า ความยาวโฟกัส จะเกิดภาพจริง แต่ถ้าระยะวัตถุน้อยกว่าความยาวโฟกัส จะเกิดภาพเสมือน






1. ภาพจริง คือภาพที่เกิดจากรังสีหักเหของแสงตัดกันจริง ๆ ลักษณะของภาพจริง เอาฉากรับได้ จะเกิดหลังเลนส์ หัวกลับกับวัตถุ

2. ภาพเสมือน คือภาพที่เกิดจากรังสีหักเหของแสงไม่ได้ตัดกันจริง ๆ แต่เสมือนตัดกัน ลักษณะของภาพเสมือน ไม่สามารถเอาฉากรับได้ จะเกิดหน้าเลนส์ หัวตั้งเหมือนวัตถุ





เลนส์นูนแบบต่างๆ

เลนส์นูนสองด้าน ( Double Convex Lens) ดังรูป a

เลนส์นูนแกมราบ ( Plano Convex Lens) ดังรูป b

เลนส์นูนแกมเว้า ( Concavo Convex Lens) ดังรูป c



อธิบาย

- แกนมุขสำคัญ ( Principle Axis ) ของเลนส์ ( ) คือเส้นตรงที่ลากผ่านจุดศูนย์กลางความโค้ง

- จุดโฟกัสของเลนส์นูน ( Principle Focus ,จุด ) คือ จุดที่รังสีขนานเดิมตีบไปตัดกัน


- Optical Center ของเลนส์ ( จุด O) คือ จุดที่อยู่บนแกนมุขสำคัญ ซึ่งรังสีเมื่อผ่านเข้าเลนส์และผ่านจุดนี้แล้ว แสงที่ผ่านออกมาจะมีแนวขนานกับรังสีเดิม

- จุดโฟกัสจริง เป็นจุดที่อยู่บนแกนมุขสำคัญของเลนส์นูน ลำแสงขนานเมื่อผ่านเลนส์นูนจะหักเหไปตัดกันจริงที่จุดโฟกัส ซึ่งอยู่ในด้านตรงข้ามกับวัตถุ

- จุดโฟกัสเสมือน เป็นจุดที่อยู่บนแกนมุขสำคัญของเลนส์เว้า ลำแสงขนานเมื่อผ่านเลนส์เว้าจะหักเหออกจากกัน โดยมีแนวรังสีเสมือนไปตัดกันที่จุดโฟกัสเสมือน ซึ่งอยู่ด้านเดียวกับวัตถุ

- ความยาวโฟกัส (f ) คือ ระยะจากจุดโฟกัสถึงจุด Optical Center ดังรูปด้านบน

สูตรที่ใช้ในการคำนวนสำหรับเลนส์มีดังนี้

- สูตรหาตำแหน่งภาพ









ความยาวโฟกัส เลนส์นูนเป็นบวก เลนส์เว้าเป็นลบ


ระยะวัตถุ วัตถุอยู่หน้าเลนส์ระยะวัตถุเป็นบวก วัตถุอยู่หลังเลนส์ระยะวัตถุเป็นลบ


ระยะภาพ ภาพอยู่หลังเลนส์ระยะภาพเป็นบวก ภาพอยู่หน้าเลนส์ระยะภาพเป็นลบ


- สูตรกำลังขยาย ( ไม่พิจารณาเครื่องหมาย )




วันพฤหัสบดีที่ 3 กันยายน พ.ศ. 2552

คุณสมบัติของแสง









แสง คือการแผ่รังสีแม่เหล็กไฟฟ้าในช่วงความยาวคลื่นที่สายตามนุษย์มองเห็น หรือบางครั้งอาจรวมถึงการแผ่รังสีแม่เหล็กไฟฟ้าในช่วงความยาวคลื่นตั้งแต่รังสีอินฟราเรดถึงรังสีอัลตราไวโอเลตด้วย สมบัติพื้นฐานของแสง (และของการแผ่รังสีแม่เหล็กไฟฟ้าทุกช่วงคลื่น)

เรื่องการเกิดภาพจากกระจกและเลนส์ภาพ (image)






แสงจากดวงอาทิตย์เป็นแสงขาว ซึ่งเราสามารถใช้ปริซึมแยกแสงที่เป็นองค์ประกอบของแสงขาวออกจากกันได้เป็นแถบสีต่างๆ 7 สีเรียงติดกัน เราเรียกแถบสีที่เรียงติดกันนี้ว่า สเปกตรัม




เกิดจากการตัดกันหรือเสมือนตัดกันของรังสีของแสงสะท้อนมาจากกระจกหรือหักเหผ่านเลนส์ แบ่งได้ 2 ประเภท คือ





1. ภาพจริง เกิดจากรังสีของแสงตัดกันจริง เกิดด้านหลังกระจกหรือเลนส์ ต้องมีฉากมารับจึงจะมองเห็นภาพ ลักษณะภาพหัวกลับกับวัตถุ มีทั้งขนาดใหญ่กว่าวัตถุ เท่ากับวัตถุ และเล็กกว่าวัตถุ ซึ่งขนาดภาพจะสัมพันธ์กับระยะวัตถุ เช่น ภาพที่ปรากฏบนจอภาพยนตร์ เป็นต้น







2. ภาพเสมือน เกิดจากรังสีของเสมือนตัดกันทำให้เกิดภาพด้านหน้ากระจกหรือเลนส์ มองเห็นภาพได้โดยไม่ต้องใช้ฉากรับภาพ ภาพมีลักษณะหัวตั้งเหมือนวัตถุ เช่น ภาพเกิดจากแว่นขยาย เป็นต้น



ภาพจากกระจกเงาเกิดจากการสะท้อนของแสงคือ เมื่อแสงจากวัตถุตกกระจกเงา แสงสะท้อนจากกระจกจะพบกัน ทำให้เกิดภาพของวัตถุขึ้น แบ่งออกได้ 2 ลักษณะ ดังนี้










1. ภาพจากกระจกเงาราบ (plan mirror) เมื่อคนยืนหรือวางวัตถุไว้หน้ากระจกเงาราบ ภาพที่เกิดขึ้นในกระจกเงาราบจะเป็นภาพเสมือนหัวตั้งอยู่หลังกระจก มีระยะวัตถุเท่ากับระยะภาพ และขนาดของวัตถุเท่ากับขนาดของภาพ แต่มีลักษณะกลับด้านกันจากซ้ายเป็นขวาของวัตถุจริง (ภาพที่ 12.16)







2. ภาพจากกระจกเงาผิวโค้ง กระจกผิวโค้งซึ่งเป็นส่วนของวงกลมนั้นมี 2 ชนิด คือ กระจกนูน และกระจกเว้า มีลักษณะการเดินภาพดังภาพที่ 12.17 และ 12.18




กระจกนูนกระจกเว้า





1. กระจายแสง





2. ส่วนสะท้อนแสงอยู่ที่ผิวด้านนอกของทรงกลม





3. ทำหน้าที่กระจายแสง





4. เกิดภาพเสมือนหัวตั้ง ขนากเล็กกว่าวัตถุและภาพกลับข้างจากข้างซ้ายเป็นข้างขวา





5. ถูกนำมาใช้ทำกระจกมองข้างและมองหลังของรถยนต์





1. รวมแสง





2. ส่วนสะท้อนแสงอยู่ที่ผิวด้านในของทรงกลม





3. ทำหน้าที่รวมแสง





4. เกิดภาพได้ทั้งภาพจริงและภาพเสมือน มีทั้งขนาดย่อและขยายขึ้นอยู่กับระยะห่างระหว่างวัตถุกับกระจก





5. ถูนำมาประดิษฐ์เป็นอุปกรณ์ให้หมอฟันใช้ส่องดูฟันในปากคนไข้เลนส์ (lens) คือ วัตถุโปร่งใสผิวโค้งด้านหนึ่งหรือโค้งทั้งสองด้าน เมื่อแสงจากวัตถุหักเหผ่านเลนส์ก็จะได้ทำให้เกิดภาพ









จำแนกตามลักษณะได้ 2 ชนิด คือ


เลนส์นูนและเลนส์เว้า (ภาพที่ 12.19)เลนส์นูนเลนส์เว้า- มีลักษณะตรงขอบเลนส์บางกว่าตรงกลางเลนส์- มีผิวด้านโค้งนูนรับแสง- มีหน้าที่รวมแสง- ให้ภาพได้ทั้งภาพจริงและภาพเสมือน-


ประโยชน์ใช้ทำแว่นตาสำหรับคนสายตายาวใช้ทำแว่นขยาย

เป็นส่วนประกอบของกล้อง- มีลักษณะตรงกลางเลนส์บางตรงขอบของเลนส์นอก- มีผิวด้านโค้งเว้ารับแสง- มีหน้าที่กระจายแสง- ให้ภาพเสมือนเท่านั้น-

ประโยชน์ใช้ทำแว่นตาสำหรับคนสายตาสั้นเมื่อนำเลนส์นูนไปรับแสงอาทิตย์ซึ่งเป็นแสงขนานแบบหนึ่ง จะเกิดเป็นจุดสว่างด่านหลังเลนส์เรียกว่า “จุดรวมแสงหรือจุดโฟกัส” โดยระยะห่างจากจุดรวมแสงถึงเลนส์เรียกว่า “ความยาวโฟกัส” เมื่อวางวัตถุไว้ที่ระยะสั้นกว่าความยาวโฟกัสของเลนส์นูน จะเกิดภาพเสมือนขนาดขยาย ซึ่งสามารถนำไปใช้ประโยชน์ในการทำทัศนูปกรณ์ต่าง ๆ ในกรณีของเลนส์เว้าซึ่งเป็นเลนส์กระจายแสงเมื่อนำเลนส์เว้าไปรับแสงขนาน จะพบว่าแสงขานนั้นจะกระจายออกจากจุดจุดหนึ่ง โดยถ้าลากเส้นต่อแนวรังสีที่กระจายออกนั้นให้ยาวขึ้น แนวรังสีนี้จะตัดกันที่จุดดังกล่าวและเรียกจุดนี้ว่า “จุดโฟกัสของเลนส์เว้า”1. แสงมีความเร็วไม่คงที่ ขึ้นอยู่กับลักษณะการเคลื่อนที่2. แสงจะประพฤติตัวเป็นคลื่นเมื่อแสงมีความเร็วใกล้กับความเร็วสัมบูรณ์และจะประพฤติตัวเป็นอณุภาคเมื่อมีความเร็วต่ำหรือกระทบสิ่งกีดขวางที่มีความต้านทานการทะลุทะลวงสูงเช่นโลหะ3. แสงในเอกภพมีความจำกัดในตัวมันเองทั้งพลังงานและความเร็ว4. สมบัติทุกอย่างของแสงมีความสัมพันธ์กับเวลาเป็นสำคัญทั้งสิ้น5. แสงมีความหน่วงในตัวมันเอง ดังนั้นแม้แสงเดินทางไปแล้วไม่กระทบสิ่งกีดขวางย่อมมีการสูญเสียพลังงานและส่งผลให้มีความเร็วต่ำลง


เนื้อหาสาระดังที่ได้เรียนมาแล้วแสง


เป็นคลื่นแม่เหล็กไฟฟ้า สามารถเคลื่อนที่ได้โดยไม่ต้องอาศัยตัวลาง และมีการเคลื่อนที่แนวเส้นตรงในตัวกลางชนิดอื่น ๆ จะเคลื่อนที่ผ่านตัวกลางแต่ละชนิดด้วยความเร็วไม่เท่ากัน ตัวกลางใดมีความหนาแน่นมากแสงจะเคลื่อนที่ผ่านตัวกลางนั้นด้วยความเร็วน้อย ถ้าแสงเคลื่อนที่ผ่านไม่ได้ก็เป็นเพราะวัตถุมีการดูดกลืน สะท้อนแสง หรือการแทรกสอดของแสง นั้นคือ คุณสมบัติของแสงที่จะกล่าวในหน่วยนี้การสะท้อนแสง (Reflection)การสะท้อนแสง หมายถึง การที่แสงไปกระทบกับตัวกลางแล้วสะท้อนไปในทิศทางอื่นหรือสะท้อนกลับมาทิศทางเดิมการสะท้อนของแสงนั้นขึ้นอยู่กับพื้นผิวของวัตถุด้วยว่าเรียบหรือหยาบโดยทั่วไปพื้นผิวที่เรียบและมันจะทำให้มุมของแสงที่ตกกระทบมีค่าเท่ากับมุมสะท้อนตำแหน่งที่แสงตกกระทบกับแสงสะท้อนบนพื้นผิวจะเป็นตำแหน่งเดียวกันดังรูปที่


4.1 ก. ลักษณะของวัตถุดังกล่าวเช่น อลูมิเนียมขัดเงาเหล็กชุบโครเมียม ทอง เงินและกระจกเงา เป็นต้น แต่ถ้าหากวัตถุมีผิวหยาบแสงสะท้อนก็จะมีลักษณะกระจายกันดังรูปที่ 4.1 ข. เช่น ผนังฉาบปูนกระดาษขาว โดยทั่วไปวัตถุส่วนใหญ่จะเป็นแบบผสมขึ้นอยู่กับผิวนั้นมีความมันหรือหยาบมากกว่าจะเห็นการสะท้อนแสงได้จากรูป 4.1 ก. และรูปที่ 4.1 ข.


กฎการสะท้อนแสง
1. รังสีตกกระทบ เส้นปกติและรังสีสะท้อนย่อมอยู่บนพื้นระนาบเดียวกัน
2. มุมในการตกกระทบย่อมโตเท่ากับมุมสะท้อนแสดงกฎของการสะท้อนแสงการหักเหของแสง (Refraction)



การหักเห หมายถึง การที่แสงเคลื่อนที่ผ่านตัวกลางหนึ่งไปยังอีกตัวกลางหนึ่งทำให้แนวลำแสงเกิดการเบี่ยงเบนไปจากแนวเดิม เช่น แสงผ่านจากอากาศไปยังน้ำ

ดังแสดงในรูปรูปแสดงลักษณะการเกิดหักเหของแสงสิ่งที่ควรทราบเกี่ยวกับการหักเหของแสง- ความถี่ของแสงยังคงเท่าเดิม ส่วนความยาวคลื่น และความเร็วของแสงจะไม่เท่าเดิม- ทิศทางการเคลื่อนที่ของแสงจะอยู่ในแนวเดิมถ้าแสงตำตั้งฉากกับผิวรอยต่อของตัวกลางจะไม่อยู่ในแนวเดิม ถ้าแสงไม่ตกตั้งฉากกับผิวรอยต่อของตัวกลางตัวอย่างการใช้ประโยชน์ของการหักเหของแสงเช่น แผ่นปิดหน้าโคมไฟ ซึ่งเป็นกระจกหรือพลาสติก เพื่อบังคับทิศทางของแสงไฟที่ออกจากโคมไปในทิศทางที่ต้องการ จะเห็นว่าแสงจากหลอดไฟจะกระจายไปยังทุกทิศทางรอบหลอดไฟแต่เมื่อผ่านแผ่นปิดหน้าโคมไฟแล้ว แสงจะมีทิศทางเดียวกัน เช่นไฟหน้ารถยนต์ รถมอเตอร์ไซด์ ดังรูปที่แสงที่ผ่านโคมไฟฟ้าหน้ารถยนต์มีทิศทางเดียวกันการกระจายแสง (Diffusion)


การกระจายแสง หมายถึง แสงขาวซึ่งประกอบด้วยแสงหลายความถี่ตกกระทบปริซึมแล้วทำให้เกิดการหักเหของแสง 2 ครั้ง (ที่ผิวรอยต่อของปริซึม ทั้งขาเข้า และขาออก) ทำให้แสงสีต่าง ๆ แยกออกจากกันอย่างเป็นระเบียบเรียงตามความยาวคลื่นและความถี่ ที่เราเรียกว่า สเปกตรัม (Spectrum)รุ้งกินน้ำ เป็นการกระจายของแสง เกิดจากแสงขาวหักเหผ่านผิวของละองน้ำ ทำให้แสงสีต่าง ๆ กระจายออกจากกันแล้วเกิดการสะท้อนกลับหมดที่ผิวด้านหลังของละอองน้ำแล้วหักเหออกสู่อากาศ ทำให้แสงขาวกระจายออกเป็นแสงสีต่าง ๆ กัน แสงจะกระจายตัวออกเมื่อกระทบถูกผิวของตัวกลางเราใช้ประโยชน์จากการกระจายตัวของลำแสง เมื่อกระทบตัวกลางนี้ เช่น ใช้แผ่นพลาสติกใสปิดดวงโคมพื่อลดความจ้าจากหลอดไฟหรือ โคมไฟชนิดปิดแบบต่าง ๆภาพรุ้งกินน้ำการทะลุผ่าน (Transmission)



การทะลุผ่าน หมายถึงการที่แสงพุ่งชนตัวกลางแล้วทะลุผ่านมันออกไปอีกด้านหนึ่ง โดยที่ความถี่ไม่เปลี่ยนแปลงวัตถุที่มีคุณสมบัติการทะลุผ่านได้ เช่น กระจก ผลึกคริสตัล พลาสติกใส น้ำและของเหลวต่าง ๆการดูดกลืน (Absorbtion)


การดูดกลืน หมายถึง การที่แสงถูกดูดกลืนหายเข้าไปในตัวกลางดยทั่วไปเมื่อมีพลังงานแสงถูกดูดกลืนหายเข้าไปในวัตถุใด ๆเช่น เตาอบพลังงานแสงอาทิตย์ เครื่องต้มน้ำพลังงานแสง และยังนำคุณสมบัติของการดูดกลืนแสงมาใช้ในชีวิตประจำวัน เช่น การเลือกสวมใส่เสื้อผ้าสีขาวจะดูดแสงน้อยกว่าสีดำ จะเห็นได้ว่าเวลาใส่เสื้อผ้าสีดำ อยู่กลางแดดจะทำให้ร้อนมากกว่าสีขาวการแทรกสอด (Interference)

การแทรกสอด หมายถึง การที่แนวแสงจำนวน 2 เส้นรวมตัวกันในทิศทางเดียวกัน หรือหักล้างกัน หากเป็นการรวมกัน ของแสงที่มีทิศทางเดียวกัน ก็จะทำให้แสงมีความสว่างมากขึ้น แต่ในทางตรงกันข้ามถ้าหักล้างกัน แสงก็จะสว่างน้อยลด การใช้ประโยชน์จากการสอดแทรกของแสง เช่น กล้องถ่ายรูปเครื่องฉายภาพต่าง ๆ และการลดแสงจากการสะท้อน ส่วนในงานการส่องสว่าง จะใช้ในการสะท้อนจากแผ่นสะท้อนแสงสรุปคุณสมบัติต่าง ๆ ของแสงแต่ละคุณสมบัตินั้น

เราสามารถนำหลักการมาใช้ประโยชน์ได้หลายอย่าง


เช่นคุณสมบัติของการสะท้อนแสงของวัตถุ เรานำมาใช้ในการออกแบบแผ่นสะท้อนแสงของโคมไฟ การหักเหของแสงนำ มาออกแบบแผ่นปิดหน้าโคมไฟ ซึ่งเป็นกระจก หรือพลาสติกเพื่อบังคับทิศทางของแสงไฟ ที่ออกจากโคมไปในทิศที่ต้องการ

การกระจายตัวของลำแสงเมื่อกระทบตัวกลางเรานำมาใช้ประโยชน์ เช่นใช้แผ่นพลาสติกใสปิดดวงโคมเพื่อลดความจ้าจากหลอดไฟ ต่าง ๆ การดูดกลืนแสง เรานำมาทำ เตาอบพลังงานแสงอาทิตย์ครื่องต้มพลังงานแสง และการแทรกสอดของแสง นำมาใช้ประโยชน์ในกล้องถ่ายรูป เครื่องฉายภาพต่าง ๆ จะเห็นว่าคุณสมบัติแสงดังกล่าวก็ได้นำมาใช้ในชีวิตประจำวันของมนุษย์เราทั้งนั้น

วันพฤหัสบดีที่ 13 สิงหาคม พ.ศ. 2552

กล้องจุลทรรศน์ (Microscope)






กล้องจุลทรรศน์ (Microscope)





กล้องจุลทรรศน์เป็นอุปกรณ์ที่ช่วยให้เรามองเห็นวัตถุที่มีขนาดเล็กมาก ประกอบด้วยเลนส์นูนความยาวโฟกัสสั้น ๆ 2 อัน โดยเลนส์อันหนึ่งอยู่ใกล้วัตถุเรียกว่าเลนส์ใกล้วัตถุ (Objective Lens) และเลนส์อันหนึ่งอยู่ใกล้ตาเรียกว่าเลนส์ใกล้ตา (Eyepiece Lens) โดยความยาวโฟกัสของเลนส์ใกล้วัตถุน้อยกว่าความยาวโฟกัสของเลนส์ใกล้ตามาก
วางวัตถุไว้ในระหว่าง ของเลนส์ใกล้วัตถุ จะได้ภาพจริงขนาดขยายอยู่หน้าเลนส์ใกล้ตาโดยจะเป็นวัตถุเสมือนของเลนส์ใกล้ตา โดยวัตถุเสมือนนี้ จะต้องอยู่ระหว่างความยาวโฟกัสของเลนส์ใกล้วัตถุกับเลนส์ เกิดภาพเสมือนขนาดขยายที่ระยะที่เห็นชัดปกติของตา คือประมาณ 25 เซนติเมตร โดยในทาง ปฏิบัติวิธีทำให้เห็นภาพชัดเรียกว่าการโฟกัสภาพทำได้โดยเลื่อนเลนส์ใกล้ตาเพื่อปรับระยะวัตถุให้เหมาะสมที่จะเกิดภาพที่ระยะเห็นได้ชัดเจน


รูปที่ 24 แสดงทางเดินแสงของกล้องจุลทรรศน์
ความยาวของตัวกล้องจุลทรรศน์ (Length 0f Microscope , L) คือระยะระหว่างเลนส์วัตถุถึงเลนส์ตา
L = (20)

โดยที่ แทนระยะภาพของเลนส์ใกล้วัตถุ
แทนระยะวัตถุของเลนส์ใกล้ตา
กำลังขยายของกล้องจะมีค่าขึ้นกับผลคูณของกำลังขยายของเลนส์ใกล้ตากับเลนส์ใกล้วัตถุ


ส่วนประกอบของกล้องจุลทรรศน์


1. ฐาน (Base) เป็นส่วนที่ใช้วางบนโต๊ะ
2. แขน (Arm) เป็นส่วนเชื่อมตัวลำกล้องกับฐาน
3. ลำกล้อง (Body tube) เป็นส่วนที่ปลายด้านบนมีเลนส์ตา ส่วนปลายด้านล่างติดกับเลนส์วัตถุ ซึ่งติดกับแผ่นหมุนได้ เพื่อเปลี่ยนเลนส์ขนาดต่างๆ



4. ปุ่มปรับภาพหยาบ (Coarse adjustment) ทำหน้าที่ปรับภาพโดยเปลี่ยนระยะโฟกัสของเลนส์ใกล้วัตถุ (เลื่อนลำกล้องหรือแท่นวางวัตถุขึ้นลง) เพื่อทำให้เห็นภาพชัดเจน



5. ปุ่มปรับภาพละเอียด (Fine adjustment) ทำหน้าที่ปรับภาพ ทำให้ได้ภาพที่ชัดเจนมากขึ้น



6. เลนส์ใกล้วัตถุ (Objective lens) เป็นเลนส์ที่อยู่ใกล้กับแผ่นสไลด์ หรือวัตถุ ปกติติดกับแป้นวงกลมซึ่งมีประมาณ 3-4 อัน แต่ละอันมีกำลังบอกเอาไว้ เช่น x3.2, x4, x10, x40 และ x100 เป็นต้น ภาพที่เกิดจากเลนส์ใกล้วัตถุเป็นภาพจริงหัวกลับ



7. เลนส์ใกล้ตา (Eye piece) เป็นเลนส์ที่อยู่บนสุดของลำกล้อง โดยทั่งไปมีกำลังขยาย 10x หรือ 15x ทำหน้าที่ขยายภาพที่ได้จากเลนส์ใกล้วัตถุให้มีขนาดใหญ่ขึ้น ทำให้เกิดภาพที่ตาผู้ศึกษาสามารถมองเห็นได้ โดยภาพที่ได้เป็นภาพเสมือนหัวกลับ



8. เลนส์รวมแสง (Condenser) ทำหน้าที่รวมแสงให้เข้มขึ้นเพื่อส่งไปยังวัตถุที่ต้องการศึกษา



9. กระจกเงา (Mirror) ทำหน้าที่สะท้อนแสงจากธรรมชาติหรือแสงจากหลอดไฟภายในห้องให้ส่องผ่านวัตถุ โดยทั่วไปกระจกเงามี 2 ด้าน ด้านหนึ่งเป็นกระจกเงาเว้า อีกด้านเป็นกระจกเงาระนาบ สำหรับกล้องรุ่นใหม่จะใช้หลอดไฟเป็นแหล่งกำเนิดแสง ซึ่งสะดวกและชัดเจนกว่า



10. ไดอะแฟรม (Diaphragm) อยู่ใต้เลนส์รวมแสงทำหน้าที่ปรับปริมาณแสงให้เข้าสู่เลนส์ในปริมาณที่ต้องการ



11. แท่นวางวัตถุ (Speciment stage) เป็นแท่นใช้วางแผ่นสไลด์ที่ต้องการศึกษา
12. ที่หนีบสไลด์ (Stage clip) ใช้หนีบสไลด์ให้ติดอยู่กับแท่นวางวัตถุ ในกล้องรุ่นใหม่จะมี Mechanical stage แทนเพื่อควบคุมการเลื่อนสไลด์ให้สะดวกขึ้น


การใช้กล้องจุลทรรศน์
การใช้กล้องจุลทรรศน์แบบใช้แสง ( Light microscope)




1.วางกล้องให้ฐานอยู่บนพื้นรองรับที่เรียบสม่ำเสมอเพื่อให้ลำกล้องตั้งตรง
2.หมุนเลนส์ใกล้วัตถุ (objective lens) อันที่มีกำลังขยายต่ำสุดมาอยู่ตรงกับลำกล้อง
3.ปรับกระจกเงาใต้แท่นวางวัตถุให้แสงเข้าลำกล้องเต็มที่
4.นำสไลด์ที่จะศึกษาวางบนแท่นของวัตถุ ให้วัตถุอยู่กึ่งกลางบริเวณที่แสงผ่านแล้วค่อยๆ หมุนปุ่มปรับภาพหยาบ (coarse adjustment knob) ให้ลำกล้องเลื่อนลงมาอยู่ใกล้วัตถุมากที่สุด โดยระวังงอย่าให้เลนส์ใกล้วัตถุสัมผัสกับกระจกปิดสไลด์
5.มองผ่านเลนส์ใกล้ตา (eyepiece)ลงตามลำกล้อง พร้อมกับหมุนปุ่มปรับภาพหยาบขึ้นช้าๆ จนมองเห็นวัตถุที่จะศึกษา แล้วจึงเปลี่ยนมาหมุนปรับปุ่มภาพละเอียด(fine adjustment knob)เพื่อปรับภาพให้ชัด อาเลื่อนสไลด์ไป มาช้าๆ เพื่อให้สิ่งที่ต้องการศึกษามาอยู่กลางแนวลำกล้อง ขณะปรับภาพ ถ้าเป็นกล้องสมัยก่อนลำกล้องจะเคลื่อนที่ขึ้นและลงเข้าหาวัตถุ แต่ถ้าเป็นกล้องสมัยใหม่แท่นวางวัตถุจะทำหน้าที่เลื่อนขึ้นลงเข้าหาเลนส์วัตถุ
6.ถ้าต้องการขยายภาพให้ใหญ่ขึ้น ให้หมุนเลนส์ใกล้วัตถุอันที่มีกำลังขยายสูงขึ้นเขข้ามาในแนวลำกล้อง และไม่ควรขยับสไลด์อีก แล้วหมุนปรับภาพละเอียดเพื่อให้เห็นภาพชัดเจนยิ่งขึ้น
7.การปรับแสงที่เข้าในลำกล้องให้มากหรือน้อย ให้หมุนแผ่นไดอะแฟรม (diaphram) ปรับแสงตามต้องการกล้องจุลทรรศน ์ ที่ใช้กันในโรงเรียนจะมีจำนวนเลนส์ใกล้วัตถุต่างๆ กันไปเช่น 1 อัน 2 อัน หรือ 3 อัน และมีกำลังขยายต่างๆกันไป อาจเป็น กำลังขยายต่ำสุด x4 กำลังขยายขนาดกลาง x10 กำลังขยายขนาดสู’งx40, x80 หรือที่กำลังขยายสูงมากๆ ถึงx100 ส่วนกำลังขยาย ของเลนส์นั้นโดยทั่วไปจะเป็นx10 แต่ก็มีบางกล้องที่เป็นx5 หรือx15 กำลังขยายของกล้องจุลทรรศน์คำนวณได้จาก ผลคูณของกำลังขยายขอองเลนส์ใกล้วัตถุกับกำลังขยายของเลนส์ใกล้ตา ซึ่งมีกำกับไว้ที่เลนส์



การระวังรักษากล้องจุลทรรศน์

เนื่องจากกล้อองจุลทรรศน์เป็นอุปกรณีที่มีราคาสูงและมีส่วนประกอบที่อาจเสียหายง่าย โดยเฉพาะเลนส์ จึงต้องใช้และเก็บรักษาด้วยความระมัดระวังให้ถูกวิธี ซึ่งมีวิธีปฏิบัติดังนี้
1.การยกกล้อง ควรใช้มือหนึ่งจับที่แขนกล้อง (arm) และอีกมือหนึ่งวางที่ฐาน(base) และต้องให้ลำกล้องตั้งตรงเสมอ เพื่อป้องกันการเลื่อนหลุดของเลนส์ใกล้ตา ซึ่งสามารถถอดออกได้ง่าย
2.สไลด์และกระจกปิดสไลด์ต้องไม่เปียก เพราะอาจทำให้แท่นวางเกิดสนิม และทำให้เลนส์ใกล้วัตถุชื้นอาจเกิดราที่เลนส์ได้
3.ขณะที่ตามองผ่านเลนส์ใกล้ตา เมื่อจะต้องหมุนปุ่มปรับภาพหยาบ ต้องหมุนขึ้นเท่านั้น ห้ามหมุนลง เพราะเลนส์ใกล้ตาอาจกระทบกระจกสไลด์ทำให้เลนส์แตกได้
4.การหาภาพต้องเริ่มต้นด้วยเลนส์วัตถุกำลังขยายต่ำสุดก่อนเสมอ เพราะปรับหาภาพสะดวกที่สุด
5.เมื่อใช้เลนส์ใกล้วัตถุที่มีกำลังขยายสูง ถ้าจะปรับภาพให้ชัดให้หมุนเฉพาะปุ่มปรับภาพละเอียดเท่านั้น
6.ห้ามใช้มือแตะเลนส์ ในการทำความสะอาดให้ใช้กระดาษสำหรับเช็ดเลนส์เท่านั้น
7.เมื่อใช้เสร็จแล้วต้องเอาวัตถุที่ศึกษาออก เช็ดแท่นวางวัตถุและเช็ดเลนส์ให้สะอาด



การบำรุงรักษากล้อง
1. ควรดูแลรักษากล้องให้สะอาดอยู่เสมอ และเมื่อไม่ได้ใช้กล้องควรใช้ถุงคลุมกล้องไว้เสมอ เพื่อป้องกันฝุ่นละอองและสิ่งสกปรกเข้าไปสัมผัสกับเลนส์ของกล้อง
2. ในการทำความสะอาดหรือการประกอบกล้อง ควรทำด้วยความระมัดระวัง อย่าให้ชิ้นส่วนถูกกระแทกหรือหลุดตกหล่น กรณีที่กล้องหรือส่วนประกอบใดๆของกล้องตกหรือกระแทก จะมีผลให้เมื่อประกอบกล้องแล้วภาพที่เห็นไม่คมชัด เป็นเพราะระบบภายใน (ปริซึม) อาจเกิดการคลาดเคลื่อนได้ ซึ่งกรณีนี้ ควรส่งให้กับบริษัทซ่อม เพราะการตั้งศูนย์ของปริซึมและระบบเลนส์ภายในนั้นต้องใช้เครื่องมือที่ซับซ้อนและความชำนาญของช่าง
3. ห้ามใช้มือหรือส่วนใดๆของร่างกาย สัมผัสถูกส่วนที่เป็นเลนส์ และหลีกเลี่ยงการนำเลนส์ออกจากตัวกล้อง
4. ในกรณีที่ถอดเลนส์ออกจากตัวกล้อง ควรใช้ฝาครอบด้วยทุกครั้งเพื่อป้องกันไม่ให้ฝุ่นละอองเข้าไปข้างใน ซึ่งอาจทำให้เกิดความไม่ชัดของการมองภาพ
5 สำหรับเลนส์ใกล้วัตถุ 100x ที่ใช้กับ Oil immersion หลังจากใช้แล้ว ควรทำความสะอาดทุกครั้ง โดยการเช็ดด้วยกระดาษเช็ดเลนส์ cotton bud หรือผ้าขาวบางที่สะอาด และนุ่ม ชุบด้วยน้ำยาไซลีน หรือส่วนผสมของแอลกอฮอล์และอีเทอร์ ในอัตราส่วน 40:60 ตามลำดับ
6 ควรหมุนปรับปุ่มปรับความฝืดเบาให้พอดี ไม่หลวมเกินไป ซึ่งจะทำให้แท่นวางสไลด์เลื่อนหมุดลงมาได้ง่าย หรือฝืดจนเกินไปทำให้การทำงานช้าลง
7 ปุ่มปรับภาพหยาบนั้น ควรหมุนในลักษณะทวนเข็มนาฬิกาอย่างช้าๆ จนกว่าจะได้ภาพ ห้ามปรับปุ่มปรับภาพทั้งซ้ายและขวาของตัวกล้องในลักษณะสวนทางกัน เพราะนอกจากจะไม่ได้ภาพตามต้องการแล้ว ยังจะทำให้เกิดการขัดข้องของฟันเฟือง
8 ในกรณีต้องการใช้แสงมากๆควรใช้การปรับไดอะแฟรม แทนการปรับเร่งไฟไปตำแหน่งที่กำลังแสงสว่างสุด (กรณีหลอดไฟ) จะทำให้หลอดไฟมีอายุยาวขึ้น
9 ก่อนปิดสวิตช์ไฟทุกครั้งควรหรี่ไฟก่อนเพื่อยืดอายุการใช้งาน และเมื่อเลิกใช้ก็ควรปิดสวิตช์ทุกครั้ง
10 การเสียบปลั๊กไฟของตัวกล้องไม่ควรใช้รวมกันกับเครื่องใช้ไฟฟ้าอื่น เพราะจะทำให้หลอดไฟขาดง่าย
11 หลังจากเช็ดส่วนใดๆของกล้องก็ตาม ถ้าไม่แน่ใจว่าแห้งหรือปราศจากความชื้นแล้ว ควรเป่าลมให้แห้ง โดยใช้พัดลม หรือ ลูกยางเป่าลม (ห้ามเป่าด้วยปากเพราะจะมีความชื้น)
12 เมื่อแน่ใจว่าแห้งและสะอาดแล้ว จึงคลุมด้วยถุงพลาสติก
13 เก็บกล้องไว้ในที่ที่ค่อนข้างแห้งและไม่มีความชื้น

การทำความสะอาดเลนส์
1. เป่าหรือปัดเศษผงหรือวัสดุอื่นๆที่อาจจะก่อให้เกิดรอยขูดขีดบนพื้นผิวเลนส์ โดยใช้ลูกยางบีบ หรือปัดด้วยแปรงขนอ่อนๆ แต่ถ้ายังไม่สามารถเอาออกได้ให้ใช้ผ้าขาวบางที่สะอาดและนุ่มชุบด้วยน้ำเช็ดเบาๆ
2. เตรียมน้ำยาเช็ดเลนส์ (อีเทอร์:แอลกอฮอล์ = 60:40)
3. ทำความสะอาดทั้งเลนส์ใกล้ตา และเลนส์ใกล้วัตถุ ใช้ cotton bud หรือ กระดาษเช็ดเลนส์พันรอบปลายคีบ แล้วชุบด้วยน้ำยาเช็ดเลนส์เพียงเล็กน้อย แล้วจึงเริ่มเช็ดเลนส์จากจุดศูนย์กลางของเลนส์แล้วหมุนทำรัศมีกว้างขึ้นเรื่อยๆไปสู่ขอบเลนส์อย่างช้าๆ
4. ในการใช้น้ำยาเช็ดเลนส์ต้องระวังด้วยว่าน้ำยานั้นสามารถละลายสีของกล้องและละลายกาวของเลนส์ได้
5. ในการผสมน้ำยาเช็ดเลนส์อาจเปลี่ยนแปลงได้ตามอุณหภูมิและความชื้น หากอีเทอร์มากเกินไปอาจทำให้มีรอยการเช็ดอยู่บนเลนส์ได้ แต่ถ้าแอลกอฮอล์มากเกินไปจะมีรอยเป็นคราบอยู่บนเลนส์เช่นกัน

ประโยชน์ของกล้องจุลทรรศน์
1. ช่วยในการมองเห็นสิ่งมีชีวิตที่มีขนาดเล็กกว่าตาเราจะมองเห็น
2. ช่วยในการศึกษาหาข้อมูลหลักฐานทางชีววิทยา